Arginine-dependent gene regulation via the ArgR repressor is species specific in chlamydia.
نویسندگان
چکیده
Some, but not all, Chlamydia spp. are predicted to encode a homolog of ArgR, a master regulatory molecule that modulates arginine biosynthesis and catabolism in bacteria in response to intracellular arginine levels. While genes for arginine biosynthesis are apparently missing in Chlamydia, a putative arginine transport system encoded by glnP, glnQ, and artJ is present. We found that recombinant Chlamydia pneumoniae ArgR functions as an arginine-dependent aporepressor that bound specifically to operator sequences upstream of the glnPQ operon. ArgR was able to repress transcription in a promoter-specific manner that was dependent on the concentration of the corepressor l-arginine. We were able to locate ArgR operators upstream of glnPQ in C. pneumoniae and Chlamydophila caviae but not Chlamydia trachomatis, which corresponded to the predicted presence or absence of ArgR in these chlamydial species. Our findings indicate that only some members of the family Chlamydiaceae have an arginine-responsive mechanism of gene regulation that is predicted to control arginine uptake from the host cell. This is the first study to directly demonstrate a species-specific mechanism of transcriptional regulation in Chlamydia.
منابع مشابه
An engineered l-arginine sensor of Chlamydia pneumoniae enables arginine-adjustable transcription control in mammalian cells and mice
For optimal compatibility with biopharmaceutical manufacturing and gene therapy, heterologous transgene control systems must be responsive to side-effect-free physiologic inducer molecules. The arginine-inducible interaction of the ArgR repressor and the ArgR-specific ARG box, which synchronize arginine import and synthesis in the intracellular human pathogen Chlamydia pneumoniae, was engineere...
متن کاملListeria monocytogenes 10403S Arginine Repressor ArgR Finely Tunes Arginine Metabolism Regulation under Acidic Conditions
Listeria monocytogenes is able to colonize human and animal intestinal tracts and to subsequently cross the intestinal barrier, causing systemic infection. For successful establishment of infection, L. monocytogenes must survive the low pH environment of the stomach. L. monocytogenes encodes a functional ArgR, a transcriptional regulator belonging to the ArgR/AhrC arginine repressor family. We ...
متن کاملInvolvement of the arginine repressor in lysine biosynthesis of Thermus thermophilus.
Lysine biosynthesis of Thermus thermophilus proceeds in a similar way to arginine biosynthesis, and some lysine biosynthetic enzymes from T. thermophilus so far investigated have the potential to function in arginine biosynthesis. These observations suggest that arginine might regulate the expression of genes for lysine biosynthesis. To test this hypothesis, the argR gene encoding the regulator...
متن کاملArgR-independent induction and ArgR-dependent superinduction of the astCADBE operon in Escherichia coli.
For Escherichia coli, growth in the absence of ammonia is termed nitrogen limited and results in the induction of genes that assimilate other nitrogen sources, a response mediated by sigma(54) and nitrogen regulator I (NR(I), also called NtrC). The astCADBE operon, which is required for growth with arginine as the sole nitrogen source, is moderately expressed during general nitrogen limitation ...
متن کاملArginine boxes and the argR gene in Streptomyces clavuligerus: evidence for a clear regulation of the arginine pathway.
The argR gene of Streptomyces clavuligerus has been located in the upstream region of argG. It encodes a protein of 160 amino acids with a deduced M(r) of 17117 for the monomer. Transformants containing the amplified argR gene showed lower activity (50%) of the biosynthetic ornithine carbamoyltransferase (OTC) activity and higher levels (380%) of the catabolic ornithine aminotransferase (OAT) a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 188 3 شماره
صفحات -
تاریخ انتشار 2006